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About me

I

I have a background in mathematics –PhD from UIUC in
mathematical logic,

I worked in academia for a couple of years,

I have been writing Haskell for a living for the last ∼6 years.



About the talk

The talk will

I focus on simple optics, that is, optics with only two type
parameters as opposed to four

I be mostly language independent but examples will be in
Kotlin,

I only cover isomorphisms, lenses and prisms,

I be about ‘what’ rather than ‘how’, since the Arrow-Optics
library already has enough documentation about usage.
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Optics Generally

Suppose you need to manipulate complex immutable data
structures in your code. A naive approach to this problem may
easily get out of hand –excessive boilerplate, code repetition,
incomposable design, etc. . . Optics offer a principled and compact
solution to this problem.

In the context of Kotlin, this usually means avoiding boilerplate
using reflection and writing compact code without using the copy

function.
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Isomorphisms

The notion of isomorphism is an abstraction which captures the
idea of representation independence.

More precisely, an isomorphism between two types –or sets if you
will– A and B is a pair of functions f : A→ B and g : B → A such
that

g(f (a)) = a and f (g(b)) = b

for all a in A and b in B.

This means that we can go back and forth between A and B
without loosing any information.
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Examples of Isomorphisms

Let us look at an example implemented in Kotlin using the
Arrow-Optics library:

data class Celsius(val rawValue: Double)

data class Fahrenheit(val rawValue: Double)

val celsiusIsoFahrenheit: Iso <Celsius ,Fahrenheit > =

Iso(

get = { celsius ->

Fahrenheit(celsius.rawValue * 1.8 + 32.0) },

reverseGet = { fahrenheit ->

Celsius (( fahrenheit.rawValue - 32.0) / 1.8) }

)

Here f and g correspond to get and reverseGet, respectively.



Examples of Isomorphisms

Now using this isomorphism we can jump between Celsius and
Fahrenheit. For instance:

// Defined with Celsius in mind

fun isFreezingCelsius(celsius: Celsius) : Boolean {

return celsius.rawValue < 0

}

// Used with Fahrenheit

val temperatureInFahrenheit = Fahrenheit (30.0);

val isTemperatureFreezing =

isFreezingCelsius(

celsiusIsoFahrenheit.reverseGet(

temperatureInFahrenheit)

)
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Examples of Isomorphisms

This is nice but it goes in only one direction. Here is a general
purpose combinator which uses both functions in an isomorphism:

fun <A,B> asIf(iso: Iso <A,B>, operation: (A) -> A):

(B) -> B {

return { b ->

iso.get(operation(iso.reverseGet(b))) }

}

// Defined with Celsius in mind

fun increaseCelsius(celsius: Celsius): Celsius {

return Celsius(celsius.rawValue + 10)

}

// Used with Fahrenheit

val increased: Fahrenheit =

asIf(celsiusIsoFahrenheit)

{c -> increaseCelsius(c)}( temperatureInFahrenheit)
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Inverse of an Isomorphism

Jolly good! We have operations defined in terms of Celsius and we
can use them with Fahrenheit. But what if we have something
designed for Fahrenheit and we need to use it with Celsius? Do we
have to define a new isomorphism?

No! We have this general purpose function:

fun <A,B> inverseIso(iso : Iso <A,B>): Iso <B,A>{

return Iso(

get = { b -> iso.reverseGet(b) },

reverseGet = { a -> iso.get(a) }

)

}
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Composition of Isomorphisms

What happens if we have more than two representations?

data class Kelvin(val rawValue: Double)

val celsiusIsoKelvin: Iso <Celsius ,Kelvin > =

Iso(

get = { celsius ->

Kelvin(celsius.rawValue + 273.0) },

reverseGet = { kelvin ->

Celsius(kelvin.rawValue - 273.0) }

)

Do we also need to define an isomorphism between Fahrenheit and
Kelvin?



Composition of Isomorphisms

Again no! Because we can compose isomorphisms:

fun <A,B,C> composeIso(iso1:Iso <A,B>, iso2: Iso <B,C>):

Iso <A,C>{

return Iso(

get = { a ->

iso2.get(iso1.get(a))},

reverseGet = {c ->

iso1.reverseGet(iso2.reverseGet(c))}

)

}

Later we will use the general composition function coming from
the Arrow-Optics library so this is here only for instructional value.



Composition of Isomorphisms

Let us finalize the part on isomorphisms with an example which
uses inverse and composition:

// Defined with Fahrenheit in mind

fun increaseFahrenheit(fahrenheit: Fahrenheit):

Fahrenheit{

return Fahrenheit(fahrenheit.rawValue + 10)

}

// Used with Kelvin

val temperatureInKelvin = Kelvin (200.0)

val fahrenheitIsoKelvin =

composeIso(inverseIso(celsiusIsoFahrenheit),

celsiusIsoKelvin)

val increasedKelvin =

asIf(fahrenheitIsoKelvin){c ->

increaseFahrenheit(c)}( temperatureInKelvin)



Interlude: Arithmetic on Types

And now for something completely different. . .

There is a well known analogy between numbers with arithmetic
operations and types with type constructors. This analogy allows
us to transfer our intuition on numbers to types and reason about
them more easily. Here is the gist of the idea for Kotlin types
expressed as a table:

a = b a + b a× b ab

Iso<A,B> Either<A,B> Pair<A,B> (B) -> A

(In these notes we will mostly work with +, × and =.)

Slogan: Identities about numbers lift to isomorphisms about types!
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Interlude: Arithmetic on Types

Let us look at a few examples. We know tat a + b = b + a for all
numbers a and b. Therefore, by the previous slide, we should be
able to construct an isomorphism of type

Iso <Either <A,B>,Either <B,A>>

for fixed types A and B. In Kotlin it is not possible to implement a
polymorphic isomorphism directly because Kotlin has generics in
functions but not in values. Of course this does not really matter
as we are just building a mental model and the code we write here
will not be used.

Nevertheless, we will include an indirect implementation for the
sake of completeness. Feel free to ignore the details.
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Interlude: Arithmetic on Types

The trick to encode generic values uses the following observation:
There is a correspondence between values and functions whose
domains have only one element. (Note that this is a lifting of the
arithmetic identity a1 = a.)

So let us start by creating a domain with a single element.

enum class One {ONE}

We have, say, for Int

val intAsFun: Iso <Int , (One) -> Int > = Iso(

get = { n -> {_ -> n}},

reverseGet = { f -> f(One.ONE)}

)

Now let us use this idea to show that Either is symmetric just like
addition.
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Interlude: Arithmetic on Types

Here is the implementation

fun <A,B> eitherSymmetry(@Suppress("UNUSED_PARAMETER")

unused: One):

Iso <Either <A,B>,Either <B,A>> {

return Iso(

get = { p -> when(p) {

is Either.Left -> Either.Right(p.value)

is Either.Right -> Either.Left(p.value)

}},

reverseGet = { p -> when(p) {

is Either.Left -> Either.Right(p.value)

is Either.Right -> Either.Left(p.value)

}}

)}

This is how it looks at a call site:

val swapped: Either <Int , String > =

eitherSymmetry <String , Int >(One.ONE)

.get(Either.Left("string"))
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Interlude: Arithmetic on Types

Here is an example about multiplication: (a× b)× c = a× (b× c)
for all numbers a, b and c .

fun <A,B,C> timesAssoc(@Suppress("UNUSED_PARAMETER")

unused: One):

Iso <Pair <Pair <A,B>,C>,Pair <A,Pair <B,C>>> {

return Iso(

get = { p ->

Pair(p.first.first ,

Pair(p.first.second ,p.second))},

reverseGet = { p ->

Pair(Pair(p.first , p.second.first),

p.second.second)}

)}



Interlude: Arithmetic on Types
Final example: a× (b + c) = a× b + a× c .

fun <A,B,C> distribute(@Suppress("UNUSED_PARAMETER")

unused: One):

Iso <Pair <A,Either <B,C>>,Either <Pair <A,B>,Pair <A,C>>>

{

return Iso(

get = { p -> when(val sum = p.second){

is Either.Left ->

Either.Left(Pair(p.first , sum.value))

is Either.Right ->

Either.Right(Pair(p.first , sum.value))

}},

reverseGet = { sum -> when(sum) {

is Either.Left ->

Pair(sum.value.first ,

Either.Left(sum.value.second))

is Either.Right ->

Pair(sum.value.first ,

Either.Right(sum.value.second))

}}

)}



Interlude: Arithmetic on Types

Let us summarize what we learned: There is a strong analogy
between types and numbers but it is painful/awkward to express in
Kotlin syntax.

Idea: Do not use Kotlin syntax! From now on we will denote
Either and Pair by + and ×, respectively. Since = already has a
meaning for types, we will denote Iso by ∼=. This will make our
reasoning much easier to follow and the ideas will be language
independent.

Now back to optics –unless there are any questions.
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Lenses Abstractly

A lens is a decomposition of a type into a product in which you are
allowed to refer to only one component.

More precisely, a lens from a type A to a type B is an isomorphism

Lens(A,B) = A ∼= B × C

for some opaque (or hidden, or existential,...) type C . In Kotlin we
can express this definition as follows:

typealias ExistentialLens <A,B> = Iso <A,Pair <B,*>>

Note that this is a pedagogical model meant to be used when
reasoning about lenses, not the actual implementation of lenses in
Arrow-Optics.
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Traditional Lenses

Here is a more traditional definition for lenses which is the basis of
the lens implementation in Arrow-Optics. A lens from a type A to
a type B consists of two functions get : A→ B and
set : A→ B → A satisfying the following laws:

I get(set a b) = b,

I set a (get a) = a,

I set (set a b1) b2 = set a b2.

Note that modify can be implemented in terms of set and get so
we do not need it here.
The typical examples are field access and update operations for
records in most languages and views of database tables –with some
caveats.
A particular example of interest for us is the pair type in Kotlin
with the component access and update operations.
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From Existential to Traditional

So what does this tell us about existential lenses? Well, we already
have a traditional lens structure on pairs. So anything isomorphic
to a pair can be made into a lens by transporting the lens structure
through the isomorphism.

Here is an implementation:

typealias ExistentialLens <A,B> = Iso <A,Pair <B,*>>

fun <A,B> fromExistential(eLens: ExistentialLens <A,B>)

: Lens <A,B> {

return Lens(

get = { a ->

eLens.get(a).first },

set = { a, b ->

eLens.reverseGet(Pair(b, eLens.get(a).second)) }

)

}
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From Traditional to Existential

How about the other direction? We can implement that direction,
too, but the ∗ projection forces us to use an unchecked cast. Also
there is no canonical choice for the second component of the pair
so the construction takes another parameter from B to pick one.

Here is the implementation:

fun <A,B> toExistential(lens: Lens <A,B>, b: B):

ExistentialLens <A,B> {

return Iso(

get = { a ->

Pair(lens.get(a), lens.set(a, b)) },

reverseGet = { p ->

lens.set(p.second as A, p.first) } //Fishy!

)

}

If this looks strange, don’t worry. I included the function for the
sake of completeness. We will not really use it.
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Summary

After omitting a fair amount of detail we showed that there is only
one lens up to isomorphism, and that is the natural lens structure
on the pair type. This characterization is conceptually illuminating
but awkward to code with. So it is better to work with the
traditional lens implementation.

Motto: Reason in terms of existential lenses, code using the
traditional implementation.
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Examples of Lenses

Now let us put the existential characterization we obtained to use.
Consider the following data classes:

data class Location (

val latitude: Float ,

val longitude: Float

)

data class Weather(

val temperature: Celsius ,

val date: Date ,

val location: Location

)



Examples of Lenses

The Weather type naturally is a product:

Weather ∼= Celsius× Date× Location

So singling out any of the fields gives a lens:

Weather ∼= Celsius× (Date× Location)
∼= Date× (Celsius× Location)
∼= Location× (Date× Celsius)

Each of these decompositions gives rise to a lens.
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Examples of Lenses

One can also single out a group of fields. For instance the
decomposition

Weather ∼= (Celsius× Date)× Location

gives a lens of type Lens<Weather,Pair<Celsius,Date>>. It
accesses/updates the fields temperature and date simultaneously.



Examples of Lenses

Now let’s do something slightly more interesting. We know that

Fahrenheit ∼= Celsius

This gives us

Weather ∼= Celsius× (Date× Location)
∼= Fahrenheit× (Date× Location)

Therefore we should have a lens of type Lens<Weather,Fahrenheit>

Of course the more general observation is that the composition of
a lens with an isomorphism is again a lens. Moreover, this
composition is supported by the Arrow-Optics library!

val weatherFahrenheit =

weatherCelsius compose celsiusIsoFahrenheit

The lens weatherFahrenheit is sometimes called a virtual field.
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Examples of Lenses
Another example: Note that

Location ∼= Floatlat × Floatlong

Inlining this in Weather gives us

Weather ∼= Celsius× Date× Location

∼= Celsius× Date× (Floatlat × Floatlong )
∼= Floatlat × (Celsius× Date× Floatlong )

Therefore we should have a lens of type Lens<Weather,Float> which
focuses on the latitude.

Again there is a more general observation to be made: composition
of lenses is a lens. This composition is also supported by the
Arrow-Optics library

val weatherLatitude =

weatherLocation compose locationLatitude
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Examples of Lenses

Let us finish the part on lenses with an example which is not as
well known as it should be. Consider the following types:

data class Weight1(val net: Float , val tare: Float)

data class Weight2(val gross: Float , val tare: Float)

and the specific isomorphism between them:

val weight1IsoWeight2: Iso <Weight1 ,Weight2 > = Iso(

get = { weight1 ->

Weight2(gross = weight1.net + weight1.tare ,

tare = weight1.tare) },

reverseGet = { weight2 ->

Weight1(net = weight2.gross - weight2.tare ,

tare = weight2.tare) }

)



Examples of Lenses

These isomorphisms give us

Weight1 ∼= Weight2 ∼= Floatgross × Floattare

Therefore we must have a lens of type Lens<Weight1,Float> focusing
on gross weight even though Weight1 has no field for gross weight.

Arrow-Optics library allows us to express this lens as

val weight1Gross: Lens <Weight1 ,Float > =

weight1IsoWeight2 compose weight2gross

where weight2gross: Lens<Weight2,Float> is the natural lens
focusing on gross weight.

The general observation is that the composition of an isomorphism
with a lens is again a lens.
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Examples of Lenses

In case you want to see, this is the same lens implemented
manually:

val weight1GrossHandmade: Lens <Weight1 ,Float > = Lens(

get = { weight1 ->

weight1.net + weight1.tare },

set = { weight1 , newGross ->

Weight1(net = newGross - weight1.tare ,

tare = weight1.tare) }

)



Prisms Abstractly

A prism is a decomposition of a type into a sum in which you are
allowed to refer to only one side.

More precisely, a prism from a type A to a type B is an
isomorphisms

Prism(A,B) = A ∼= B + C

for some opaque (or hidden, or existential,...) type C . In Kotlin we
can express this definition as follows:

typealias ExistentialLens <A,B> = Iso <A,Either <B,*>>

Again, this is not the actual implementation. You know the drill. . .
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Traditional Prisms

As in the case of lenses, there is a traditional law based definition
of prisms. A prism from type A to type B consists of two functions
review : B → A and preview : A→ OptionB satisfying the
following laws:

I preview(review b) = Some b

I if preview a = Some b then review b = a.

Note that a prism can be thought of as a partial isomorphism in the
sense that preview and review are almost inverses of each other.
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Traditional Prisms

The implementation in Kotlin uses the same functions with
different names: review is called reverseGet and preview is
called getOption.

Also, instead of getOption you may see a function called
getOrModify of type (A) -> Either<A,B> in documentation –so
Option<B> is replaced by Either<A,B>. This function returns the
original input from A if the getOption function produces None.
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Traditional Prisms

We can again implement the connection between these two
formulations in Kotlin with some caveats.

fun <A,B> fromExistentialPrism(ePrism:

ExistentialPrism <A,B>): Prism <A, B> {

return Prism(

getOption = { a ->

when(val eb = ePrism.get(a)){

is Either.Left -> Some(eb.value)

is Either.Right -> None

}},

reverseGet = { b ->

ePrism.reverseGet(Either.Left(b)) }

)}



Traditional Prisms

And here is the other direction.

fun <A,B> toExistentialPrism(prism: Prism <A,B>):

ExistentialPrism <A,B>{

return Iso(

get = { a -> when(val eb = prism.getOrModify(a)){

is Either.Left -> Either.Right(eb.value)

is Either.Right -> Either.Left(eb.value)

}},

reverseGet = { eb -> when(eb){

is Either.Left -> prism.reverseGet(eb.value)

is Either.Right -> eb.value as A // Fishy!

}}

)}



Examples of Prisms

As in the case of lenses we immediately see that prisms are closed
under composition. Also composition of a lense with an
isomorphism from both sides is again a prism. I leave the details to
you.



Examples of Prisms

Let us start with a generic example. For enum classes, you only
need reverseGet to define a prism.

// Assumes revGet is injective

inline fun <A, reified B: Enum <B>>

makePrismFromHalf(noinline revGet: (B) -> A):

Prism <A,B>{

val mkPair = { b:B -> Pair(revGet(b), b) }

val lookupTable: Map <A,B> =

enumValues <B>().asList ().associate(mkPair)

return Prism(

getOption = { a -> lookupTable.getOrNone(a) },

reverseGet = revGet

)

Injectivity assumption in the comment means that revGet sends
distinct inputs to distinct outputs.



Examples of Prisms

Let us look at a concrete example.

enum class Days(val prettyName: String)

{ MONDAY("Monday"),

TUESDAY("Tuesday"),

WEDNESDAY("Wednesday"),

THURSDAY("Thursday"),

FRIDAY("Friday"),

SATURDAY("Saturday"),

SUNDAY("Sunday")

}

Clearly prettyName is injective, so we have a prism:

val dayParser: Prism <String ,Days > =

makePrismFromHalf { d -> d.prettyName }

Not too exciting...



Examples of Prisms
Now let us build on this example a little.

enum class WorkDays

{ MONDAY , TUESDAY , WEDNESDAY , THURSDAY , FRIDAY }

val daysPrismWorkDays: Prism <Days ,WorkDays > =

makePrismFromHalf { wd ->

Days.values ()[wd.ordinal] }

// Possible ArrayIndexOutOfBoundsException

val weekDayParser: Prism <String ,WorkDays > =

dayParser compose daysPrismWorkDays

We get a parser/pretty-printer for week days for free! Also, the
source of pretty names for weekend days and work days is the same
and is unique. If we want to change it we we only change
prettyName in the Days enum. So design is more composable.

One final advantage is that it is really easy to write tests since
there are test functions for prisms –actually for all optics– in
Arrow-Optics.
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Appendix I: Isomorphisms as Other Optics

Recall the following enum

enum class One {ONE}

If we denote this type by 1 then we have the following isomorphism:
X ∼= X × 1. Thus, if we have an isomorphism A ∼= B, then we also
have A ∼= B × 1. Therefore every isomorphism is a lens.

Similarly using the class

enum class Zero {}

and the identity X ∼= X + 0 we also deduce every isomorphism is
also a prism.

These observations are supported by Arrow-Optics, so we can use
set and getOrModify functions on isomorphisms.
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Appendix II: Affine Traversals

An affine traversal is what kotlin calls an Optional. An Optional
from A to B is an isomorphism

Optional(A,B) = A ∼= B × C + D

for some opaque types C and D.

They usually arise as compositions of lenses and prisms. Suppose
we have a lens A ∼= B × C and a prism B ∼= D + E . Then inlining
B gives

A ∼= B × C ∼= (D + E )× C ∼= D × C + E × C

It is easy to show that composition in the other way around also
gives an optional.
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Appendix III: Setters

Setters also have a nice existential characterization. A setter from
A to B is an isomorphism

Setter(A,B) = A ∼= F (B)

where F is an opaque “mappable” type constructor. The technical
term is functor and Arrow used to have functors but in the
upcoming version it seems to be dropped so I will not say anything
more on the subject.



Thank you for listening!


